Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.

Q DP problem:
The TRS P consists of the following rules:

SUM1(cons2(x, l)) -> +12(x, sum1(l))
SUM1(nil) -> 011(#)
+12(11(x), 11(y)) -> +12(x, y)
SUM1(cons2(x, l)) -> SUM1(l)
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(cons2(x, l)) -> PROD1(l)
*12(11(x), y) -> 011(*2(x, y))
*12(01(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(01(x), y) -> *12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
*12(11(x), y) -> +12(01(*2(x, y)), y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SUM1(cons2(x, l)) -> +12(x, sum1(l))
SUM1(nil) -> 011(#)
+12(11(x), 11(y)) -> +12(x, y)
SUM1(cons2(x, l)) -> SUM1(l)
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(cons2(x, l)) -> PROD1(l)
*12(11(x), y) -> 011(*2(x, y))
*12(01(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(01(x), y) -> *12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
*12(11(x), y) -> +12(01(*2(x, y)), y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 4 SCCs with 8 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

+12(11(x), 11(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
Used argument filtering: +12(x1, x2)  =  x2
01(x1)  =  x1
11(x1)  =  11(x1)
#  =  #
Used ordering: Quasi Precedence: 1_1 > #


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
QDP
                    ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
                    ↳ QDP
QDP
                      ↳ QDPAfsSolverProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
Used argument filtering: +12(x1, x2)  =  x2
01(x1)  =  01(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
                    ↳ QDP
                    ↳ QDP
                      ↳ QDPAfsSolverProof
QDP
                          ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM1(cons2(x, l)) -> SUM1(l)

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

SUM1(cons2(x, l)) -> SUM1(l)
Used argument filtering: SUM1(x1)  =  x1
cons2(x1, x2)  =  cons1(x2)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*12(11(x), y) -> *12(x, y)
*12(01(x), y) -> *12(x, y)

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

*12(01(x), y) -> *12(x, y)
Used argument filtering: *12(x1, x2)  =  x1
11(x1)  =  x1
01(x1)  =  01(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ QDPAfsSolverProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*12(11(x), y) -> *12(x, y)

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

*12(11(x), y) -> *12(x, y)
Used argument filtering: *12(x1, x2)  =  x1
11(x1)  =  11(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
              ↳ QDP
                ↳ QDPAfsSolverProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

PROD1(cons2(x, l)) -> PROD1(l)

The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

PROD1(cons2(x, l)) -> PROD1(l)
Used argument filtering: PROD1(x1)  =  x1
cons2(x1, x2)  =  cons1(x2)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.